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Abstract. Constrained pseudorandom functions are pseudorandom func-
tions that admit constrained keys to evaluate the function on prede-
fined subsets of the domain, while in rest they remain secure. Boneh
and Waters used this concept to introduce a two-party identity-based
non-interactive key exchange. Our work reviews their construction and
considers a straightforward extension to multi-party settings.
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1 Introduction

Constrained pseudorandom functions (cPRF) were recently (and independently)
introduced by Boneh and Waters [1], Kiayias et al. [2] and Boyle et al. [3]. In a
traditional PRF there exists a key that enables the evaluation of the function at
all points of the domain; a cPRF extends this capability and allows the derivation
of constrained keys that enable the evaluation of the function at predefined
subsets of the domain, while in rest it remains secure.

Boneh and Waters used this concept to construct an identity-based non-
interactive key exchange (ID-NIKE) [1]. NIKE is an important cryptographic
primitive that allows distinct users to share a common secret key without be-
ing online in the same time (i.e. NIKE does not require interaction between
parties), a property often required in practice. The key is subsequently used
for cryptographic purposes (e.g. encrypted communication). Nowadays, applica-
tions like digital conferences, collaborative work and shared access to resources
impose the necessity of multi-party key exchange. Although Diffie and Hellman
defined a two-party NIKE back in 1976 [4], the existence of a multi-party NIKE
is one of the most famous open-problems in cryptography. In 2003 Joux extended
Diffie-Hellman protocol to three parties by using bilinear maps [5]; Boneh and
Silverberg defined multi-party NIKE under the multi-linear assumptions [6], but
no multi-linear candidates where proposed until very recently.

Identity-based cryptography allows a party to use his identity (e.g. name,
email addresses, phone numbers) instead of generating and properly authenticate
a public key. A NIKE protocol in the ID-settings is preferred in mobile or wireless
networks where energy preserving is a main concern due to a significant reduction
in comparison to PKI-based protocols [7].



2 Constrained PRF

We review the notions from [1], but restrict to the particular types of cPRF and
the informal security definition of cPRF, which we use through our work.

A cPRF function F is similar to a standard PRF F : K × X → Y (where
K denotes the key space) with an additional set of constrained keys Kc such
that a key ks ∈ Kc enables the evaluation of F only in a certain subset S of X .
Analogues to the standard PRF, a cPRF is secure if no probabilistic polynomial-
time (PPT) adversary B can distinguish between the value of the function and a
uniformly random chosen value in Y, even if B is given evaluations at points and
constrained keys on his choice; i.e. for k ∈ K fixed, B has access to two oracles:
(1) F.eval(x) returns F (k, x), the evaluation of F at x and (2) F.constrain(S)
returns the constrained key kS that enables the evaluation of F at any x ∈ S.
To eliminate trivial win, B is not allowed to make any real-or-random challenge
at points x he can evaluate by himself (i.e. he queried F.eval(x) or F.constrain(S),
such that x ∈ S).

Definition 1. Let F : K×X 2 → Y be a PRF. Then, ∀w ∈ X , a left/right cPRF
supports two constrained keys kLw and kRw that enable the evaluation of F at all
points (w, x) ∈ X 2 (the left part is fixed), respectively (x,w) ∈ X 2 (the right part
is fixed). We denote a left/right cPRF by PRFL/R.

Definition 2. Let F : K × {0, 1}N → Y be a PRF. Then, ∀v ∈ {0, 1, ?}N , a
bit-fixing cPRF supports a constrained key kv that enables the evaluation of F
at all points x ∈ {0, 1}N that satisfy the pattern v. We denote a bit-fixing cPRF
by PRF bf .

3 ID-NIKE from cPRF

Fig.1 reviews the Boneh-Waters ID-NIKE from left/right cPRF [1].

Setup(λ): let F : K × X 2 → Y be a secure left/right PRF, selects a random
master secret key msk ←R K and outputs the public parameters of the cPRF
as params;

Extract(msk, idi): computes F.constrain(msk, {(idi, ·)}) to obtain kLidi and
F.constrain(msk, {(·, idi)}) to obtain kRidi , then outputs skidi = (kLidi , k

R
idi

);
KeyGen(params, skidi , idj): outputs F (msk, (idi, idj)) if idi < idj and

F (msk, (idj , idi)) if idi > idj (in lexicographic order).

Fig. 1. Boneh-Waters ID-NIKE [1]

Correctness. For correctness, we require that both parties obtain the same
key. This follows directly from the correctness of the left/right cPRF: WLOG



let idi < idj ; the party identified by idi uses kLidi to evaluate F (msk, (idi, ·)) at

idj and the party identified by idj uses kRidj to evaluate F (msk, (·, idj)) at idi.
Security. We skip the security proof, but invite the reader to address the

original paper [1].

4 Multi-Party ID-NIKE from cPRF

A generalization of Boneh-Waters ID-NIKE to N parties (N > 2) is immediate:
each party receives a N-tuple of constrained keys {k1idi , . . . k

N
idi
} that enable the

evaluation of F at all points of XN that contain idi. The construction uses a
natural approach: it replaces the left/right cPRF by the bit-fixing cPRF.

Fig.2 introduces the multi-party ID-NIKE.

Setup(λ): let F : K × XN → Y be a secure bit-fixing cPRF, selects a random
master secret key msk ←R K and outputs the public parameters of the cPRF
as params;

Extract(msk, idi): computes F.constrain(msk, {(idi, ·, . . . , ·)}) to obtain k1idi ,
F.constrain(msk, {(·, idi, ·, . . . , ·)}) to obtain k2idi , · · · ,
F.constrain(msk, {(·, . . . , ·, idi)}) to obtain kNidi ,
then outputs skidi = (k1idi , . . . , k

N
idi

);
KeyGen(params, skidi , {id1, . . . , idN}): outputs F (msk, (idπ(1), idπ(2), . . . , idπ(N))),

where idπ(1) < idπ(2) < · · · < idπ(N) (in lexicographic order).

Fig. 2. Multi-party ID-NIKE

We remark that the construction allows any M < N parties to share a key
by replacing a missing id with a dummy value iddummy. As a major drawback
of the scheme, the private key skidi is linear in the number of parties N .

Correctness. For correctness, we require that all parties obtain the same
key. This follows directly from the correctness of the bit-fixing cPRF: each party

identified by idi uses k
π(i)
idi

to evaluate F at (idπ(1), . . . , idπ(N)).
Security. The security definition for multi-party ID-NIKE can be seen as

a natural generalization of ID-NIKE security model, hence we only describe it
informally. A multi-party ID-NIKE is secure if no PPT adversary A can distin-
guish between the shared key of a set of parties and a uniformly random chosen
value in the key space, even if A is given private keys of some of the parties and
shared keys on his choice; i.e. for k ∈ K fixed, A has access to two oracles: (1)
Ext(idi) returns the secret key skidi and (2) Rev(id1, . . . , idN ) returns the shared
key kid1,...,idN . To eliminate trivial win, A is not allowed to make any real-or-
random challenge at groups of identities (id1, . . . , idN ) he can evaluate by himself
(i.e. A queried Rev(id1, . . . , idN ) or Ext(idi), such that idi ∈ {id1, . . . , idN}). We
denote a real-or-random challenge as a Test query.



The security of the system derives from the security of the bit-fixing cPRF (as
a straightforward generalization of the Boneh-Waters ID-NIKE security proof).
The proof is complete if an adversary B against the bit-fixing cPRF perfectly
simulates the adversary A against the multi-party ID-NIKE. Whenever A makes
a query in the multi-party ID-NIKE security game, B makes a query in the
constrained security game and returns the answer to A:

– Ext(idi): B queries F.Constrain oracle on S, where S denotes the set of all
points of XN that contain idi and returns the answer to A;

– Rev(id1, . . . , idN ): B queries F.Eval oracle on (idπ(1), idπ(2), . . . , idπ(N)) and
returns the answer to A;

– Test(id1, . . . , idN ): B makes a real-or-random challenge to the cPRF oracle
and returns the answer to A.

Note that B can always ask for a correct challenge, since all Rev and Test
queries are distinct and no Ext is allowed for an identity in Test. Therefore, if A
can distinguish the correct shared key F (msk, (idπ(1), idπ(2), . . . , idπ(N))) from
random, then B can solve the challenge in the constrained security game.
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