About a visual secret sharing scheme

Ruxandra-Florentina Olimid

Faculty of Mathematics and Computer Science
University of Bycharest
Romania

ruxandra.olimid@fmi.unibuc.ro

November 18, 2010
1. VSS Definition
2. Scheme Presentation
3. Scheme Analysis
4. Implementation and results
5. Conclusions
Visual Secret Sharing Schemes

SSS (Secret Sharing Scheme) - a secret is split between n participants so that only the authorised groups of participants are able to reconstruct the secret, by combining their shares;
SSS (Secret Sharing Scheme) - a secret is split between n participants so that only the authorised groups of participants are able to reconstruct the secret, by combining their shares;

Phases:
- Shares computation;
- Shares distribution to participants;
- Secret reconstruction.
SSS (Secret Sharing Scheme) - a secret is split between n participants so that only the authorised groups of participants are able to reconstruct the secret, by combining their shares;

Phases:
- Shares computation;
- Shares distribution to participants;
- Secret reconstruction.

VSS (Visual Secret Sharing Scheme) - a SSS for which the secret, and therefore the components, are images;
The secret: a Black and White image;

The shares: $n \geq 3$ RGB-colored images of the same size.
RGB Model

- By mixing 2 colors, Y, M or C are obtained;
- R, G and B are all needed in order to obtain White;
A White pixel of the reconstructed image correspond to a White pixel of the secret image;

All the other pixels are considered Black.
A White pixel of the reconstructed image correspond to a White pixel of the secret image;

All the other pixels are considered Black.

1. How are the shares computed?
A White pixel of the reconstructed image correspond to a White pixel of the secret image;

All the other pixels are considered Black.

1. How are the shares computed?
2. How is the secret reconstructed from shares?
Scheme’s parameters and efficiency:

- The secret must be split into at least 3 shares \((n \geq 3)\);
- The size of one share equals the size of the secret;
- The reconstructed image maintain the same size and ratio of the secret image.
Scheme’s parameters and efficiency:

- The secret must be split into at least 3 shares \((n \geq 3)\);
- The size of one share equals the size of the secret;
- The reconstructed image maintains the same size and ratio of the secret image.

Scheme’s Secrecy:

- \(k = 1\) or \(k = 2\): perfect secrecy;
- \(3 \leq k < n\): partial information is revealed;
- \(k = n\): the secret image is perfectly recovered.
Implementation and results

- Implemented in Python: PIL (Python Image Library), IDLE (Python Integrated Development Environment);
- Pretty fast processing;
- Experimental results supports the theory.

<table>
<thead>
<tr>
<th>No of used shares (k)</th>
<th>Color computed secret</th>
<th>Black and white computed secret</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The presented secret sharing scheme:

- is used for sharing Black and White secret images using R,G,B-colored components;
- maintains the actual size and ratio of the secret;
- is storage-efficient;
- provides perfect secrecy for 1 or 2 participants;
- provides perfect recovery of the secret when all participants cooperate;
- can be successfully used in practice.
References

Thank you!

Questions