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Abstract—Group Key Transfer (GKT) protocols allow mul-
tiple parties to share a common secret key: a trusted entity
selects a private key and securely distributes it to the qualified
participants. Hsu et al. introduced a GKT protocol based on
secret sharing, which they claimed to be secure. Unlike their
affirmation, we report a vulnerability: an insider can cancel key
consistency such that at the end of the protocol distinct users
own different keys. This leads to the futility of the protocol. Even
more, the attacker is able to choose the values of the injected
keys on his own wish. Finally, we propose a simple and efficient
countermeasure that stands against the revealed attack.

I. INTRODUCTION

A general trend of today’s society is to benefit of group ap-
plications that allow multiple users to share the same resources
or perform collaborative tasks. Applications like audio-video
conferences, data sharing or collaborative computing are used
daily in offices and homes all over the world. In this context,
group security becomes an important duty: it guarantees that
only authorized users are allowed to access the resources or
perform different tasks within the group.

To achieve security, most protocols require a key establish-
ment phase, which grant all users a common secret session
key. The key is subsequently used to achieve the main goals
of secure communication (confidentiality, authentication, in-
tegrity).

A Group (or conference) Key Establishment (GKE) protocol
is a key establishment protocol run by more than two parties.
GKE divide into two classes: Group Key Transfer (GKT)
protocols and Group Key Agreement (GKA) protocols. GKT
protocols rely on a trusted entity called Key Generation Center
(KGC) to select a private key, which is then secretly distributed
to all qualified users; sometimes, one of the users (the initiator
of the protocol) may play the role of the KGC. In contrast,
GKA protocols do not assume the existence of a trusted
entity; the common key is agreed by the cooperation of all
communication users.

Secret sharing schemes are widely used as building blocks
of GKE protocols, due to the advantages they provide: a con-
venient way to differentiate between principals power within
the group, delegation of duties by passing shares to other
participants, group authentication instead of entity authentica-
tion, cheating detection, simple management of group sizing
using the accepted threshold [1]. Secret sharing represents a
method to split a secret into multiple shares, which are then
distributed to the participants via secure channels. The secret

can be recovered only when the members of an authorized
subset of participants combine their shares together.

A. Motivation and personal contributions

Many papers published in the last years introduce GKT
protocols based on secret sharing that lack security proofs. The
omission of a solid security analysis leads to a high probability
to discover vulnerabilities. The following examples support
our claim: Nam et al. [2] disclosed a replay attack against
Harn and Lin’s protocol [3], Olimid [4] and Kim [5] revealed
several attacks against Sun et al.’s construction [6] and Olimid
[7] mounted an insider attack against Yuan et al.’s proposal [8].

We enrich the list of weak GKT protocols by showing the
insecurity of Hsu et al.’s construction [9].

First, we prove that it fails against an inside attack. More
precisely, we show that an active insider can always ruin the
protocol in the sense that distinct users accept with different
group keys. In addition, the values of these keys are not
random, but chosen by the adversary. The vulnerability is
caused by an authenticity flaw, which permits the attacker to
impersonate the initiator.

Second, we suggest a simple and efficient countermeasure
against the exposed vulnerability. We highlight that our aim
is to give a solution that stands against the proposed attack;
we do not affirm that the improved version is secure against
other attacks.

B. Outline

The paper is organized as follows. The next section contains
the preliminaries. Section III describes Hsu et al.’s protocol.
Section IV reveals the proposed attack. Section V analyzes
possible countermeasures. Last section concludes.

II. PRELIMINARIES
A. Informal Security Goals

A group key establishment protocol should satisfy a set of
properties, which we informally recall next.

The key must remain hidden for any party except the autho-
rized participants, even if the protocol runs for multiple times,
called sessions (key confidentiality). More, even if a session
key is compromised, this should have no impact on other
session keys (known key security). Ideally, no information
about the key should be disclosed regardless the adversary’s



behavior in future or past runs of the protocol (forward and
backward secrecy).

Users should be confident that the group key has been
randomly chosen (key randomness) and has never been used
before (key freshness). In case of GKT protocols, this intro-
duces a mandatory trust assumption: all parties must trust the
KGC (or the initiator) to generate a key that fulfills these
properties; in case of GKA protocols, this is achieved by
construction when the inputs of all users have the same impact
on the key computation and no party is able to force the key
to a chosen value (key control).

Authorized users must be aware of the identity of the
other parties involved in the key establishment (key and entity
authentication). This implies that it should be impossible for
the adversary to impersonate other parties or for a user to be
tricked to believe that he shares the key with someone else
(unknown key share).

Although confidentiality and authentication guarantee that
only qualified members may obtain the group key, a participant
has no assurance that the others have actually computed the
key. Such an extra requirement is called key confirmation and
certifies each user that the others really obtained the same
group key. We introduce a Key Confirmation phase inspired
by the work of Boyd [10] in Section V.

Regarding the appartenance to the group, a key establish-
ment protocol must stand against two types of adversaries:
outsiders and insiders. An outsider is a non-registered group
member who can never take part to protocol executions, while
an insider is a registered group member who may initiate
or take part to protocol sessions. Clearly, an insider is more
powerful than an outsider and therefore should be considered
while analyzing the security of a protocol.

In the present paper we consider an active insider (i.e.
has full control over the communication channel, being able
to modify, delete or inject messages) that aims to ruin key
consistency, such that at the end of the protocol distinct users
own different keys; the attacker can choose the values of the
keys he injects to the participants. Even if the attack can be
easily detected at application runtime, it leads to the futility
of the protocol. We exemplify such an attack against Hsu et
al.’s GKT protocol in Section IV.

B. Security Assumptions

We review two main security assumption Hsu et al’s
protocol relies on.

1) Computational Diffie-Hellman (CDH) assumption: Let
G be a multiplicative cyclic group of prime order p, with
g as generator. The Computational Diffie-Hellman (CDH)
assumption holds if given g,¢g® and g¢°, any probabilistic
polynomial-time adversary A has a negligible probability in
computing g’

AdvQPH = PrA(p.g,9%, 9") = ¢°"] < negl(K) (1)

where a, b € Z;, are random and K is the security parameter.

2) Discrete Logarithm Problem (DLP): Let G be a multi-
plicative cyclic group of prime order p, with g as generator.
The Discrete Logarithm (DLP) is hard in G if given g%, any
probabilistic polynomial-time adversary A has a negligible
probability in computing a:

Adv™" = PriA(p,g,9") = a] < negl(K) ()
where a € Zy, is random and K is the security parameter.

C. Notations

We introduce next the notations we will use for the rest of

the paper.
Let Y = {U,...,Un,} be the set of all possible users,
{Ui,...,Us}, t < m the subset of authorized participants

to a given session with U; as initiator (after a possible
reordering), (pk;, sk;) the public-private key pair of U; such
that pk; = ¢*** in a multiplicative cyclic group G, Sigy, (M)
the signature of U; on a message M, Very, the corresponding
public verification and h a collision-resistant hash function.
We consider U, € {Us,...,U,} to be an active attacker,
other than the initiator, whose goal is to break key consistency
(the initiator has no interest in ruin the protocol; besides, for
U, = U; the attack is trivial).

We denote by + X a uniformly random choice from a
specified set of values X, || string concatenation and A —* a
broadcast message originating from A.

III. HSU ET AL.”S PROTOCOL

In 2012, Hsu et al. introduced a GKT protocol based on a
secret sharing [9]. Figure 1 describes the protocol in detail.

The protocol assumes that the DLP is hard in G (i.e.
given pk; = g°F it is computationally infeasible to compute
ski, © = 1,...,m) and that CDH holds (i.e. given pk;
and pk; it is computationally infeasible to compute goFiski
i,j = 1,...,m, i # j). Although the computations are
performed within the group GG, we do not explicit specify that
during protocol description, since it is clear from the context.

We highlight next some advantages of the protocol.

First, unlike the majority of GKT protocols, the construction
does not inquire an online KGC - the initiator U; performs
this role.

Second, the key transfer is performed over public channels
only. The existence of secure channels over public networks is
a strong assumption, which usually represents a limitation of
GKT, imposed by a previously shared secret between the KGC
and each group member (during the Users Registration phase).
In Hsu et al’s proposal, each participant U;, ¢ = 1,...,m,
must own a public-secret key pair (pk;, sk;) authenticated by
a trusted authority with a certificate. Then, the initiator U,
establishes a common secret key with each other participant at
runtime, which has the advantage to be fresh for each session.



Initialization. Let G' be a multiplicative cyclic group of
order p, with g as generator, where p is a large safe prime
(ie. p' = ”2;1 is also prime);

Users Registration. Each user U;, : = 1,...,m owns a
public-private key pair (pk;, sk;) s.t. pk; = g% in G;

Round 1. User Uy:
1.1. chooses 1 + T Z*;

1.2. sends a key generation request:
Ul _>*: ({Ula R Ut},T],pkl)

Round 2. Each user U;,i = 2,...,t:
2.1. chooses r; +% Z;;
2.2. computes S; = pkfk"’”” a shared secret with Uy
and A’U,thl = h(Si, 7‘1);
2.3. broadcasts:
Uq; —*: (Tiapki7 Authz)

Round 3. User Uy:

3.1. computes S; = pkiFITiT =2 ..t

3.2. checks if Auth; = h(S;,r1), ¢ = 2,...,t; If at
least one equality does not hold, he quits;

3.3. chooses the group key k <+ Zy, splits each
secret S; into two parts .S; = z;||y; and computes ¢ — 1
values K; = k — T;, where T, = (yiv(xi%,r) is the

inner product of the vectors y;v(z;) = y; >, 7] “le;

(e =(0,...,1,...,0) with 1 on position j),i =2,...,¢
and r = (ry,...,7¢);

3.4. computes Auth = h(k,Uy,...,Us, r1,...,7¢,
KQ,...,Kt);

3.5. broadcasts:
Uy —*: (Auth, Ko, ..., K})
Key Computation. Each user U;, i = 2,... ¢
4.1. computes the inner product T; = (y;v(z;),r),
recovers the group key k = T; + K;;
4.2. checks if Auth = h(k,Uq,...,Ur1,...
Ko, ..., K}). If the equality does not hold, he quits.

y Tty

Fig. 1. Original Version of Hsu et al.’s Group Key Transfer Protocol [9]

Third, the protocol allows each user U; to recover the group
key by only using his two corresponding shares: T; (computed
by the user in the Key Computation phase) and K; (received
from the initiator in Round 3). No additional interaction
between participants is required for key computation.

IV. INSIDER ATTACK

Hsu et al’s protocol is vulnerable to an active attack
mounted from inside. The adversary succeeds to make differ-
ent authorized users accept distinct keys and therefore break
key consistency: any qualified user U; € U \ {U,, U1 } (except
the initiator) computes a key k; that has been chosen in

Step 1. U, is qualified to participate to a protocol session
and hence he finds the key:
k=T,+ K,
Step 2. U, intercepts the broadcast message sent in
Round 3 of the protocol and prevents it from reaching
U, U, el \ {Ua, U1}§
Step 3. U, eavesdrops on K; and therefore computes:
T, =k—-K;
Step 4. U, chooses a key k;, computes the corresponding
value
K=k —T;
and authenticates his selection as:

A’U,thi = h(k‘i,Ul,...7Ut,7‘1,...77”t,K27...,KZ(,...Kt)
Step 5. U, sends:
U, —>U;: (Authi7K2,...,Kl{,...,Kt)

Step 6. U; recovers the correct value T;, computes the
group key
ki =T, + K]
and checks that
Auth = h(ki,Ul,...,Ut,’l“l,...,Tt,Kg,...,Kz{,...
holds. U; accepts k; as the correct group key.

77Kt)

Fig. 2. Insider Attack against the Original Version of Hsu et al.’s Protocol

advance by the adversary. The attack assumes that U, is able
to: (1) intercept exchanged messages; (2) prevent messages
from reaching their destination and (3) inject messages on his
own choice.

Figure 2 reveals the attack. It is self-contained and hence
we omit other comments. We only emphasize that the user U;
is unable to discover the attack during the protocol execution:
U, € U\ {U,,U;} recovers the correct value T, but then
computes the group key as k; = T;+ K. The verification holds
in the Key Computation phase, because the attacker was able
to compute Auth; based on his own choice of k;. Therefore,
U, considers k; to be the correct group key.

We remark that U, can mount the same attack simultane-
ously against multiple users to induce each one a different
key. More, the adversary’s identity remains hidden, which
allows him to attack several times, without being detected and
excluded from the group.

V. COUNTERMEASURES

The previous attack is caused by an authentication flaw:
the group key k is not properly authenticated as originating
from the initiator U;. This allows the adversary to impersonate
U, and send a modified but valid authentication message that
helps him to achieve his goal.

A trivial way to detect the attack is immediate: a Key
Confirmation phase assures that all users posses the correct key
[10]. Figure 3 describes this enhancement: each user signs the
group key he obtained and broadcasts it to the other members.



Initialization. Let G' be a multiplicative cyclic group of
order p, with g as generator, where p is a large safe prime
(ie. p' = ”2;1 is also prime);

Users Registration. Each user U;, : = 1,...,m owns a
public-private key pair (pk;, sk;) s.t. pk; = g% in G;

Round 1. User Uy:
1.1. chooses 1 + T Z*;

1.2. sends a key generation request:
Ul _>*: ({Ula R Ut},T],pkl)

Round 2. Each user U;,i = 2,...,t:
2.1. chooses r; +% Z;;
2.2. computes S; = pkfk"’”” a shared secret with Uy
and A’U,thl = h(Si, 7‘1);
2.3. broadcasts:
Uq; —*: (Tiapki7 Authz)

Round 3. User Uy:

3.1. computes S; = pkiFITiT =2 ..t

3.2. checks if Auth; = h(S;,r1), ¢ = 2,...,t; If at
least one equality does not hold, he quits;

3.3. chooses the group key k <+ Zy, splits each
secret S; into two parts .S; = z;||y; and computes ¢ — 1
values K; = k — T;, where T; = (y;v(x;),7) is the
inner product of the vectors y;v(x;) = y; Z;Zl zl e,
(e =(0,...,1,...,0) with 1 on position j),i =2,...,¢
and r = (ry,...,7¢);

3.4. computes Auth = h(k,Uy,...,Up,r1,... 714,
KQ, ey Kt);

3.5. broadcasts:

Uy —*: (Auth, Ko, ..., K})

Key Computation. Each user U;, i = 2,... ¢

4.1. computes the inner product T; = (y;v(z;),r),
recovers the group key k = T; + K;;

4.2. checks if Auth = h(k,Uy,..., U, 11, .. 74,
Ko, ..., K}). If the equality does not hold, he quits.

Key Confirmation. Each user U;, i = 1,... ¢

5.1. computes V; = Sigy, (h(k, U1, ..., U1, .., T4,
KQ; ceey Kt));

5.2. broadcasts:

U, =*:V;

5.3. checks if Very, (V;, h(k,Uy,...,Us,r1,... 14,
Ks,...,K;)) holds for all j = 1,...,t, j # i. If at
least one equality does not hold, he quits.

Fig. 3.

First Improved Version of Hsu et al.’s Group Key Transfer Protocol

Initialization. Let G' be a multiplicative cyclic group of
order p, with g as generator, where p is a large safe prime
(le. p' = %1 is also prime);

Users Registration. Each user U;, t = 1,...,m owns a
public-private key pair (pk;, sk;) s.t. pk; = g*% in G;

Round 1. User U;:
1.1. chooses r; «+ T Z;;

1.2. sends a key generation request:
Ul _>*: ({U17 ) Ut}7rl7pk1)

Round 2. Each user U;,i =2,...,t:
2.1. chooses r; <& Z;;
2.2. computes S; = pkfk"”“ a shared secret with Uy
and A’U,thz = h(SZ‘, Tl);
2.3. broadcasts:
U; —*: (T’iapki7 Authl)

Round 3. User Uy:

3.1. computes S; = pkSFITiT =2 .. t;

3.2. checks if Auth; = h(S;,r1), i = 2,...,t. If at
least one equality does not hold, he quits;

3.3. chooses the group key k <+ Zy, splits each
secret S; into two parts S; = x;||y; and computes ¢ — 1
values K; = k — T;, where T; = (y;v(xz;),r) is the
inner product of the vectors y;v(z;) = y; Z;Zl zl e,
(e; =(0,...,1,...,0) with 1 on position j),i =2,...,¢
and r = (r1,...,7¢);

3.4. computes Auth = Sigy, (h(k,Uy,...,Us,
T1yee oy Tty Koy oy Kt))s

3.5. broadcasts:

Uy —*: (Auth, Ko, ..., K})

Key Computation. Each user U;, i = 2,... ¢

4.1. computes the inner product T; = (y;v(x;),r),
recovers the group key k = T; + K;;

4.2. checks if Very, (Auth, h(k,Ux,..., U, 71, .. 74,
Ko, ..., K})) holds. If the equality does not hold, he
quits;

Fig. 4. Second Improved Version of Hsu et al.’s Group Key Transfer Protocol

The drawback of this solution is clear - the computational
and transmission costs significantly increase: in addition to
the original protocol, each user generates one signature and
verifies t — 1 others, respectively an additional round of
communication is necessary and ¢ more broadcast messages
circulate over the network. More, this approach does not elim-
inate the attack, but only reveals it during the key generation
process, in advance to the execution of the application. We

To maintain the confidentiality of its value, the key is first remark that such attacks are usually disclosed at runtime,
hashed, along with some of the public values used during the since the users realize that they cannot properly achieve their
protocol execution. tasks (for example they are not able to communicate between



TABLE I
COMPARISON OF COMPUTATIONAL AND TRANSMISSION OVERHEAD

No. of Sig | No. of Ver | No. of rounds | No. of broadcast messages
Trivial countermeasure t tt—1) 1 t
Proposed countermeasure 1 t—1 0 0

themselves).

We propose a different improvement: the initiator signs
the value Auth so that the attacker cannot forge it. Figure
4 describes the countermeasure in detail. Unlike the first
solution, the second discards the authentication flaw (U,
cannot impersonate U; anymore) and decreases the overall
cost (in addition to the original protocol, the initiator generates
one signature and the rest of participants verify it).

Table I gives an overhead comparison between the trivial
countermeasure and the proposed improvement, plotting the
additional costs introduced by the two solutions.

VI. CONCLUSION

Hsu et al. recently introduced a GKT protocol based on
secret sharing, which they claimed to be secure and interest-
ing for practical applications [9]. However, the authors only
provide informal and incomplete security arguments to support
their affirmation. We prove that they are wrong by revealing
an authentication flaw, which permits an attacker to break the
key consistency of the protocol: the adversary makes different
users compute distinct keys, which leads to the futility of the
protocol.

First, we mention the trivial solution of adding a Key
Confirmation phase; however, this does not eliminate the
authentication flaw and significantly decreases the efficiency.
Finally, we propose a simple countermeasure that stand against
the proposed attack, introduces only a small overload and
maintains the same number of rounds as the original protocol.

We do not claim that our improvement leads to a secure
version of the protocol, but only affirm that it stands against the
reveal attack. A detailed security analysis could be considered
for future work.
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