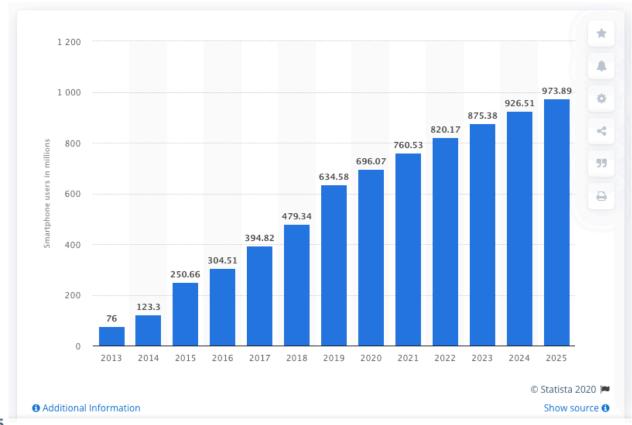
Privacy of subscribers in mobile networks: changes and challenges over time

Ruxandra F. Olimid

University of Bucharest, Romania

Norwegian University of Science and Technology - NTNU, Norway



October 17th, 2020
Webminar on Cryptography, Network Security and Cybersecurity

Motivation

[Source: https://www.statista.com/statistics/467163/forecast-of-smartphone-users-in-india/]

Estimated human population: 7.8 billions (oct.2020)

Smartphone users in India 2015-2025

Published by Vaibhav Asher, Sep 10, 2020

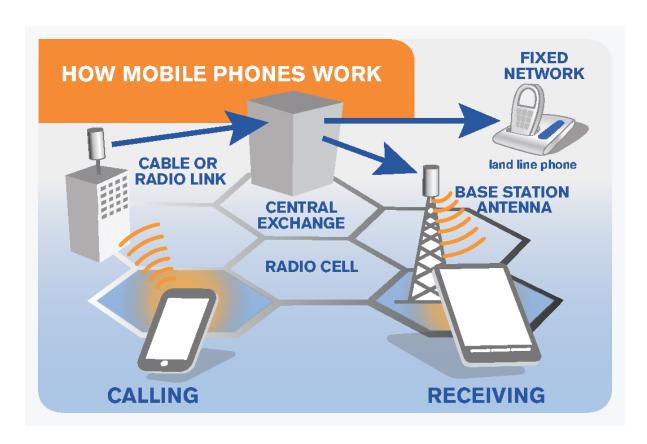
The number of smartphone users in India was estimated to reach over 760 million in 2021, with the number of smartphone users worldwide forecasted to exceed to 3.8 billion users in 2021.

Mobile Networks Evolution

Mobile communications: from 1G to 5G **1G** 2G 3G 4G 5G **6 6** People PA (D) Thing

mechanisms

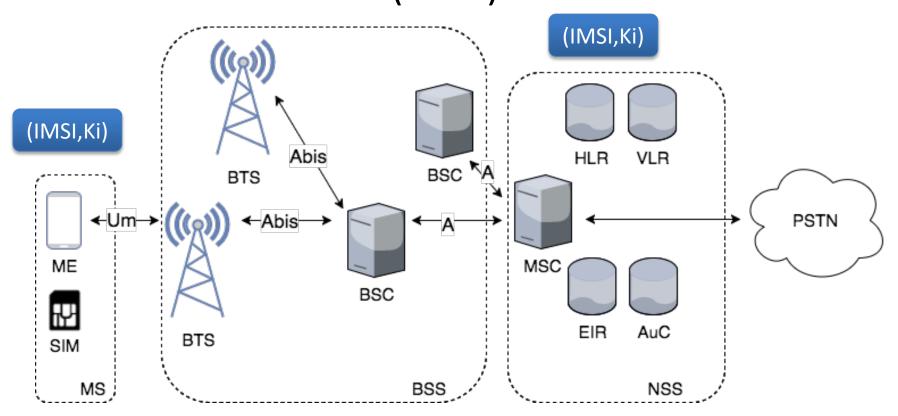
vulnerabilities


ideas

2G > 3G > 4G > 5G

Security improvements

Mobile Networks General Architecture


- User equipment
- Access network
 - Radio link
- Core network

[Source: http://emfguide.itu.int/emfguide.html]

Ruxandra F. Olimid

The Global System for Mobile Communications (GSM)

MS: Mobile Station

ME: Mobile Equipment

SIM: Subscriber Identity Module

BSS: Base Station Subsystem

BTS: Base Transceiver Station

BSC: Base Station Controller

NSS: Network Subsystem

MSC: Mobile Services Switching Center

HLR: Home Location Register
VLR: Visitor Location Register
EIR: Equipment Identity Register

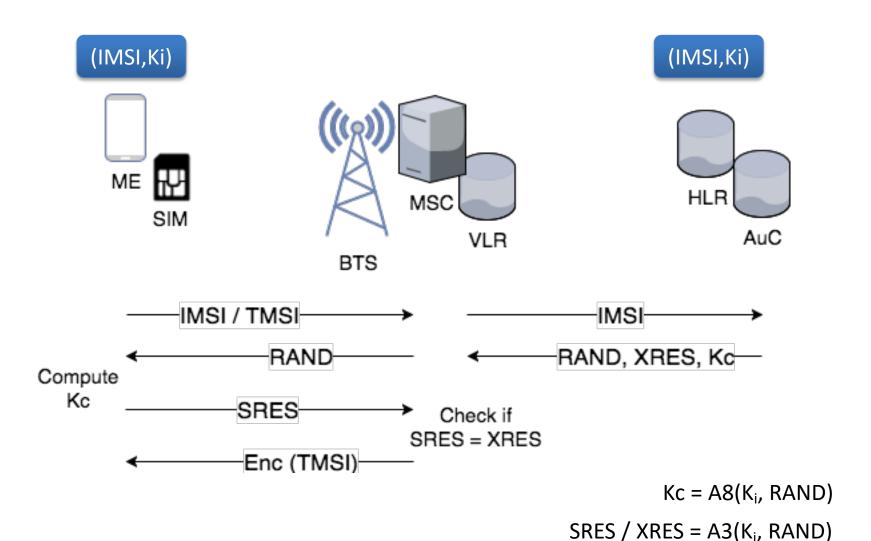
AuC: Authentication Center

PSTN: Public Switched Telephone Network

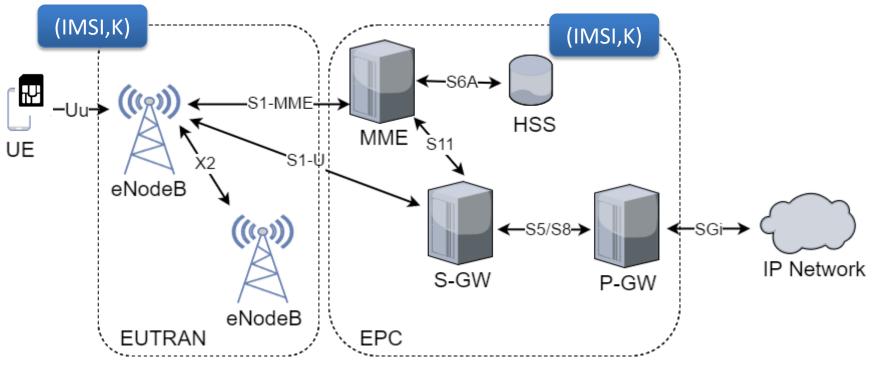
Identification of Subscribers

IMSI (International Mobile Subscriber Identity)

MCC (Mobile Country Code) - 3 digits -	MNC (Mobile Network Code) - 2 digits (EU) / 3 digits (US) -	MSIN (Mobile Subscriber Identification Number)
404,405 (India)	81 (BSNL) / 44 (Spice)	XXXXXXXXX
242 (Norway)	01 (Telenor) / 02 (Telia)	XXXXXXXXX
226 (Romania)	01 (Vodafone) / 10 (Orange)	XXXXXXXXX


[List of MCCs and MNCs: http://mcc-mnc.com/]

Identification of Subscribers



- IMSI (International Mobile Subscriber Identity)
- TMSI (Temporary Mobile Subscriber Identity)
- **Ki** (cryptographic key)

Authentication of Subscribers (GSM)

Long Term Evolution (LTE)

UE: User Equipment

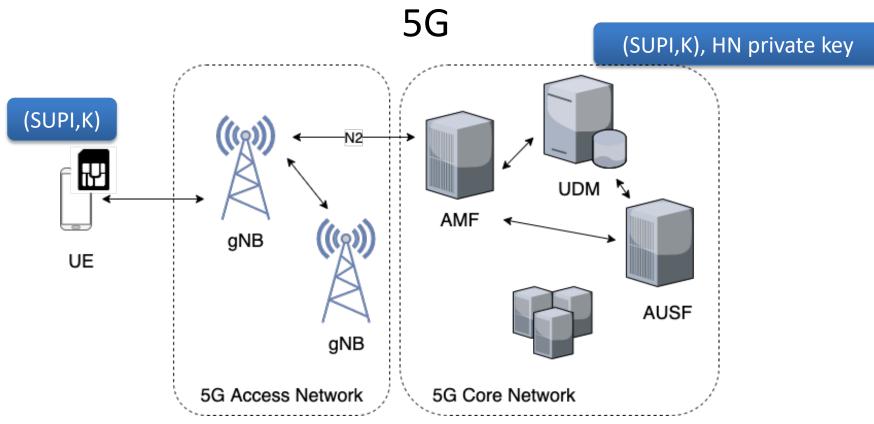
USIM: Universal Subscriber

Identity Module

EUTRAN: Evolved UTRAN

EPC: Evolved Packet Core

eNodeB: Evolved NodeB


MME: Mobility Management Entity

S-GW: Serving Gateway P-GW: PDN-Gateway

HSS: Home Subscriber Server

IMSI (International Mobile Subscriber Identity)

мсс	MNC	MSIN
(Mobile Country Code)	(Mobile Network Code)	(Mobile Subscriber Identification Number)

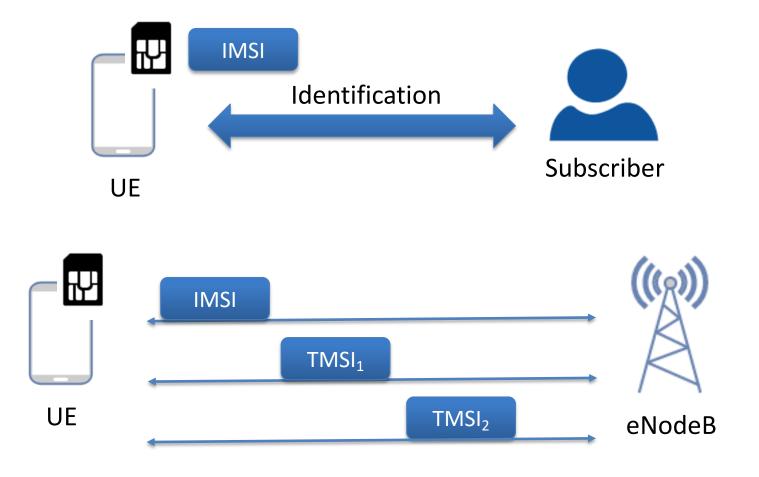
UE: User Equipment

USIM: Universal Subscriber

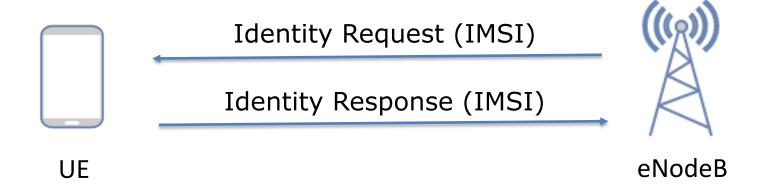
Identity Module

gNB: Next Generation NodeB

AMF: Access and Mobility Management Function


AUSF: Authentication Server Function UDM: Unified Data Management

SUPI (Subscription Permanent Identifier)


IMSI
(International Mobile Subscriber Identity)

Or
(Network Access Identifier)

The Role of the TMSI

Assumed Privacy Breach

"The mechanism is initiated by the MME that requests the user to send its permanent identity. The user's response contains the IMSI in cleartext. This represents **a breach in the provision of user identity confidentiality.**"

[3GPP TS 33.401 V16.3.0 (2020-07)]

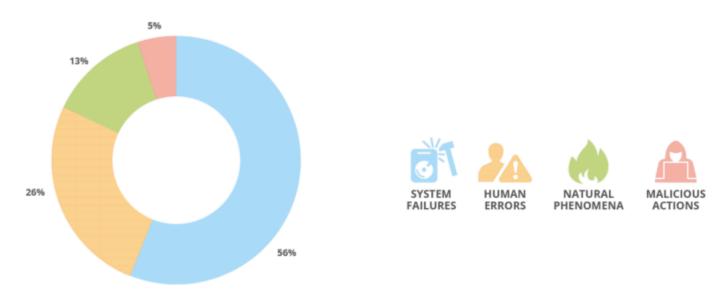
IMSI Catchers in the real world

≡ Rayzone Group

Q

Piranha – 2G, 3G, and 4G IMSI Catcher

Piranha is a 2G, 3G and 4G (LTE) IMSI Catcher System that enables gathering mobile phone identities within the proximity of the system.


[Source: https://rayzone.com/products/piranha-2g-3g-and-4g-imsi-catcher/]

Attacks in the real world

3.1 ROOT CAUSE CATEGORIES

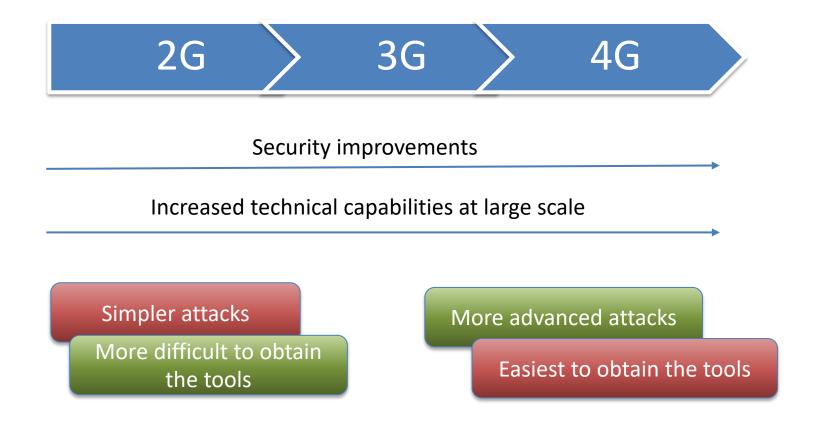
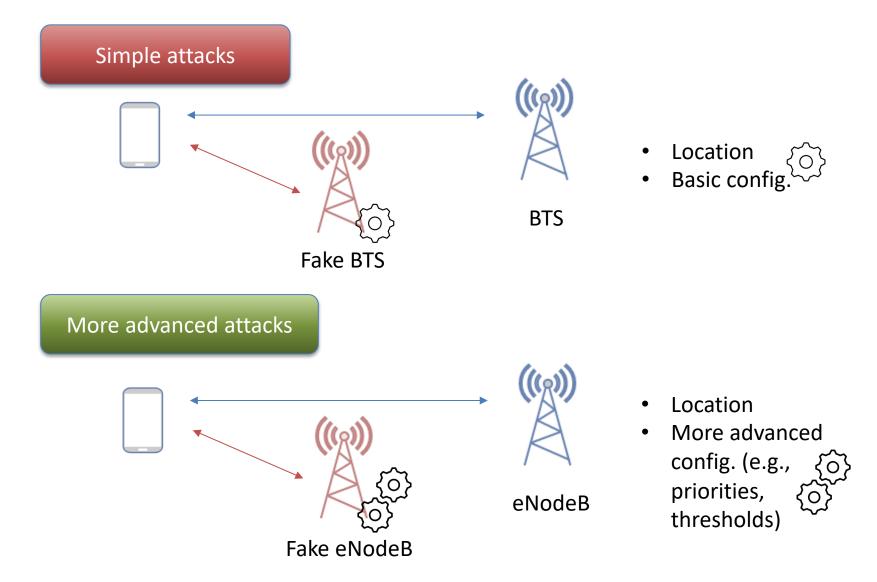
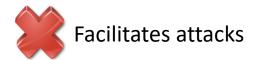

In 2019 more than half of the telecom security incidents were system failures. This is consistent with previous years, although somewhat lower. Often they are hardware failures and software bugs. Human errors show an increase, rising up to one fourth of the security incidents. Most often these are accidental cable cuts and faulty software changes/updates. 13% of the incidents are caused by natural phenomena also increased up to 30% compared to the previous year. Only 5% of incidents were due to malicious actions. Typically these cases are denial of service attacks, cable theft and arson.

Figure 6: Root cause categories Telecom security incidents – 2019

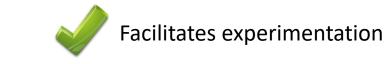


[Source: https://www.enisa.europa.eu/publications/annual-report-telecom-security-incidents-2019]

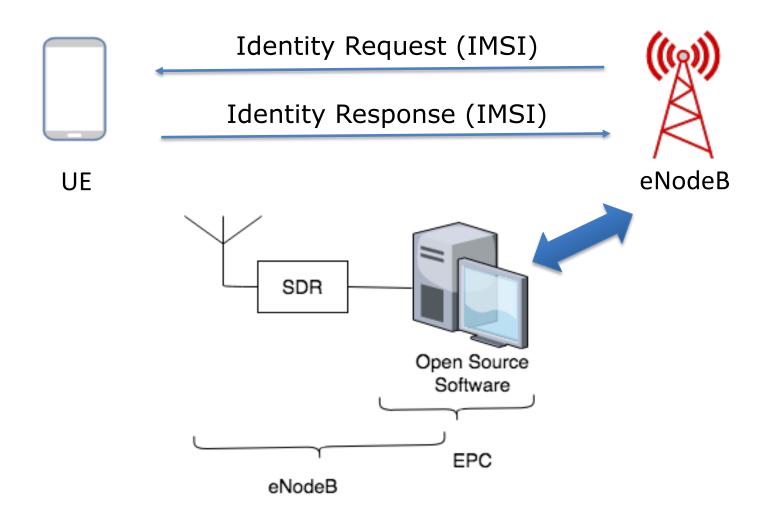
Evolution in time

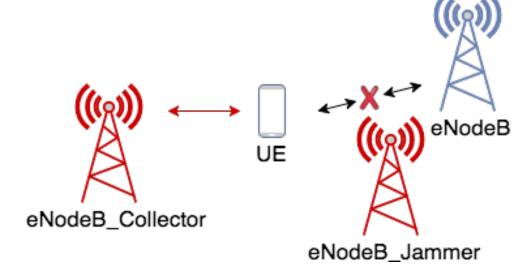

Difficulty of attacks

Availability of low-cost tools at large scale


Easy to obtain the tools

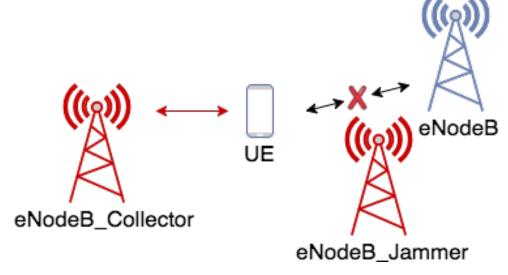
Easy to obtain the tools





Experimental Work

Ruxandra F. Olimid


Our IMSI Catcher

- eNodeB_Jammer: causes the UE to detach from the serving cell it camps on
- eNodeB_Collector: masquerades as an authorized eNodeB running on the (second) highest priority frequency, but with higher signal power, causing the UE to try reselection and expose the IMSI

Mjølsnes, S.F. and Olimid, R.F., MMM-ACNS 2017, Easy 4G/LTE IMSI catchers for non-programmers

Our IMSI Catcher

Phase 1. Gather the configuration parameters:

- Find the EARFCN DL and TAC (using the Samsung device)
- Run eNodeB_Jammer using MCC, MNC and the EARFCN DL of the commercial cell
- Read new EARFCN DL after reselection

Phase 2. Configure and run the LTE IMSI Catcher:

- Run eNodeB_Collector using MCC, MNC and the new EARFCN DL after reselection in the commercial network, but a different TAC
- Run eNodeB_Jammer configured as in Phase 1

Mjølsnes, S.F. and Olimid, R.F., MMM-ACNS 2017, Easy 4G/LTE IMSI catchers for non-programmers

Our IMSI Catcher: Hardware

- Software radio peripherals (USRPs)
 - Ettus B200mini + antennas
- Computers (access and core network) [https://www.ettus.com/product/details/USRP-B200mini]
 - Standard desktops or laptops: Intel NUC D54250WYK (i5-4250U CPU@1,30GHz), Lenovo ThinkPad T460s (i7-6600U CPU@2,30GHz)

Mobile terminals:

- Samsung Galaxy S4 device, used to find the LTE channels and TACs used in the targeted area
- Two LG Nexus 5X phones running Android v6, used to test our IMSI Catcher
- SIM cards

Mjølsnes, S.F. and Olimid, R.F., MMM-ACNS 2017, Easy 4G/LTE IMSI catchers for non-programmers

Our IMSI Catcher: Software

- LTE Emulator:
 - Open Air Interface (OAI), an open source software that provides a (partially) standard compliant implementation of LTE

Service Mode:

- Dial *#0011# on Samsung Galaxy S4 device
- Read configuration of the commercial network:
 EARFCN DL, TAC, MCC, MNC, Cell ID

Mjølsnes, S.F. and Olimid, R.F., MMM-ACNS 2017, Easy 4G/LTE IMSI catchers for non-programmers

Our IMSI Catcher: Results

Mjølsnes, S.F. and Olimid, R.F., MMM-ACNS 2017, Easy 4G/LTE IMSI catchers for non-programmers

- Low-cost IMSI Catcher (< 3000 EUR):
 - COTS hardware and readily available software only
 - No (or very basic) changes in the source code

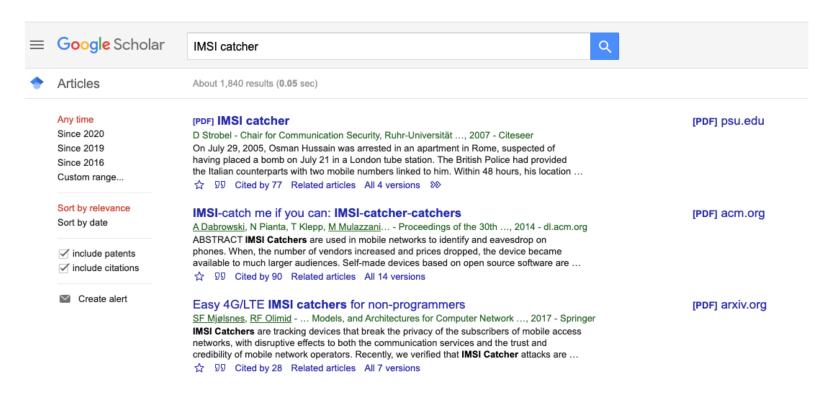
```
110 SACK id-downlinkNASTransport, Identity request
146 SACK id-uplinkNASTransport, Identity response
182 id-initialUEMessage, Tracking area update request
110 SACK id-downlinkNASTransport, Tracking area update reject
94 id-downlinkNASTransport, EMM status
214 id-initialUEMessage, Attach request, PDN connectivity request
             NAS-PDU: 17f49d7386090756082924505902830303

    Non-Access-Stratum (NAS)PDU

               0001 .... = Security header type: Integrity protected (1)
               .... Oll1 = Protocol discriminator: EPS mobility management messages (0x07)
               Message authentication code: 0xf49d7386
               Sequence number: 9
               0000 .... = Security header type: Plain NAS message, not security protected (0)
               .... 0111 = Protocol discriminator: EPS mobility management messages (0x07)
               NAS EPS Mobility Management Message Type: Identity response (0x56)
               Mobile identity - IMSI
```

```
80 [MESSAGE] 9 -> 9 0 0103:990956EMMREG_COMMON_PROC_CNF ue id 0x000000002
81 [EVENT] 9 0103:991075EMM state DEREGISTERED UE 0x000000002
82 [MESSAGE] 8 -> 13 0 0103:9911920 S6A_AUTH_INFO_REQ IMSI 242 visited_plmn 242. re_sync 0
83 [MESSAGE] 13 -> 8 0 0103:9921110 S6A_AUTH_INFO_ANS imsi 242 DIA METER_AUTHENTICATION_DATA_UNAVAILABL
84 [EVENT] 7 0103:9921680 S6A_AUTH_INFO_ANS S6A Failu e imsi 242 (IMSI 242
```

Our IMSI Catcher: Results


Mjølsnes, S.F. and Olimid, R.F., SECRYPT 2017. Experimental Assessment of Private Information Disclosure in LTE Mobile Networks.

Behaviour:

- Denial-of-Service (DoS) until reboot cause 3 (Illegal UE)
- Downgrade to non-LTE services cause 7 (EPS services not allowed)
- Reconnection to the commercial network cause 15 (No suitable cells in tracking area)

Many Publications and Results

Practical Attacks Against Privacy and Availability in 4G/LTE Mobile Communication Systems

Altaf Shaik*, Ravishankar Borgaonkar[†], N. Asokan[‡], Valtteri Niemi[§] and Jean-Pierre Seifert*

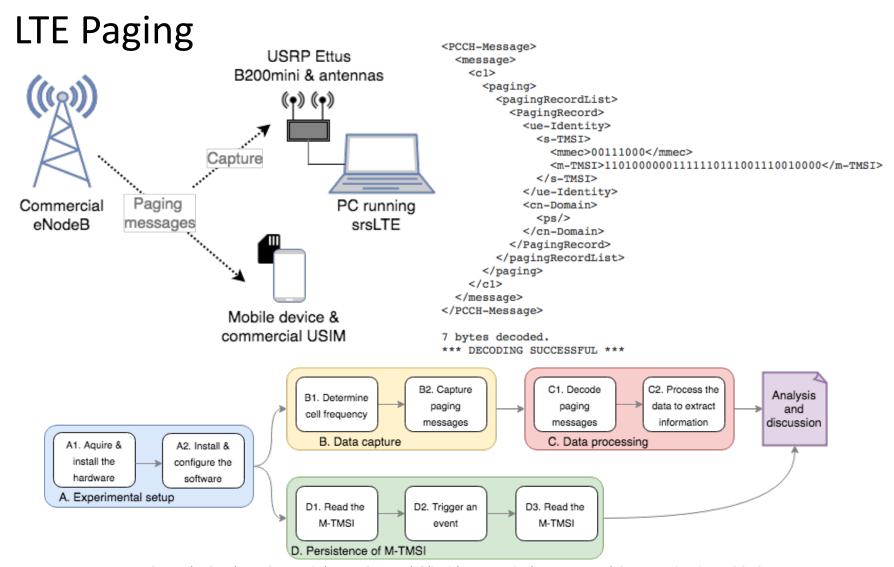
*Technische Universität Berlin and Telekom Innovation Laboratories

Email: (altaf²², jpseifert) [§]@sect-labs.tu-berlin.de

[†]Aalto University

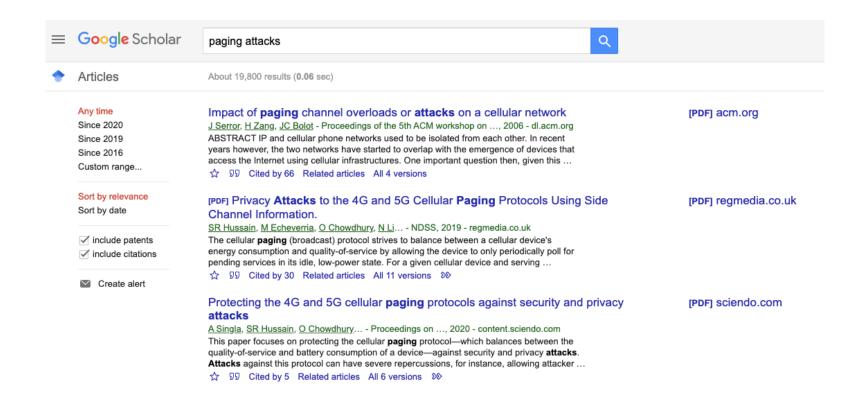
Email: ravishankar.borgaonkar@aalto.fi

[‡]Aalto University and University of Helsinki

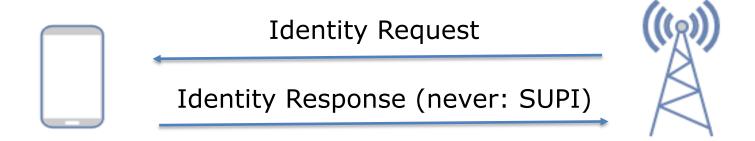

Email: asokan@acm.org

[§]University of Helsinki

Email: valtter.iniemi@helsinki.fi


LTE security, protocol exploits and location tracking experimentation with low-cost software radio

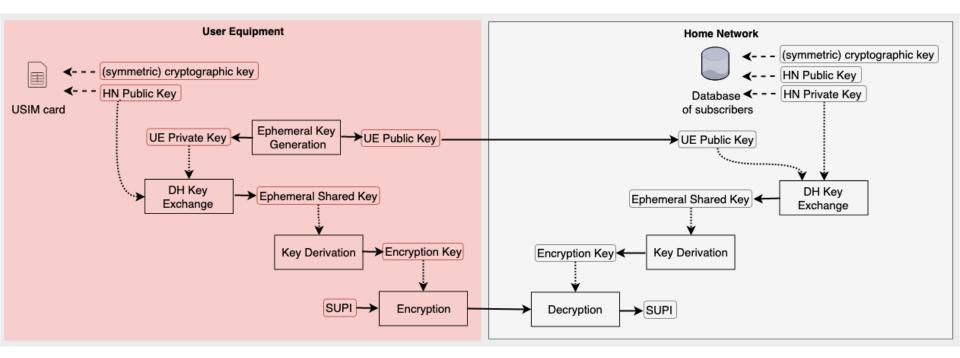
Roger Piqueras Jover Bloomberg LP, New York, NY rpiquerasjov@bloomberg.net



Sørseth, C., Zhou, S.X., Mjølsnes, S.F. and Olimid, R.F., Wireless Personal Communications, 2019 Experimental analysis of subscribers' privacy exposure by LTE paging.

Many Publications and Results

Changes in 5G


"In response to the Identifier Request message, the UE never sends the SUPI."

SUPI: Subscription Permanent Identifier

[3GPP TS 33.501 V16.4.0 (2020-09)]

5G – Concealment of SUPI (to SUCI)

Mjolsnes, S.F. and Olimid, R.F., IEEE CommMag 2019. Private Identification of Subscribers in Mobile Networks: Status and Challenges

SUPI: Subscription Permanent Identifier SUCI: Subscription Concealed Identifier

5G - Concealment of SUPI (to SUCI)

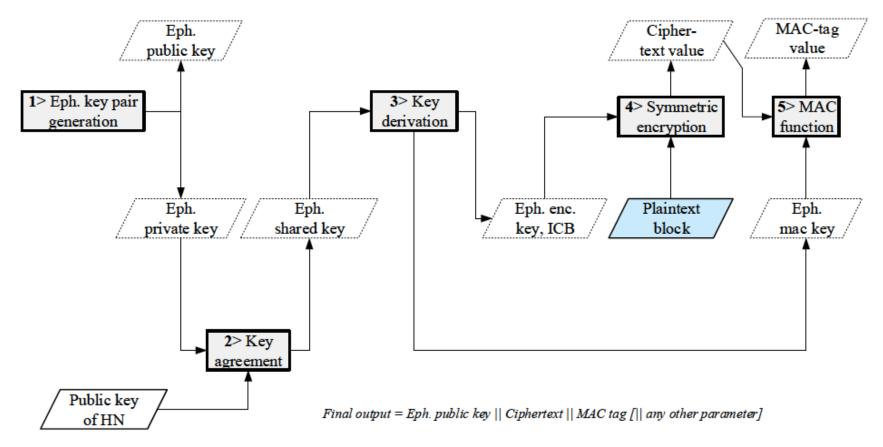


Figure C.3.2-1: Encryption based on ECIES at UE

ECIES: Elliptic Curve Integrated Encryption Scheme

[3GPP TS 33.501 V16.4.0 (2020-09)]

5G – Concealment of SUPI (to SUCI)

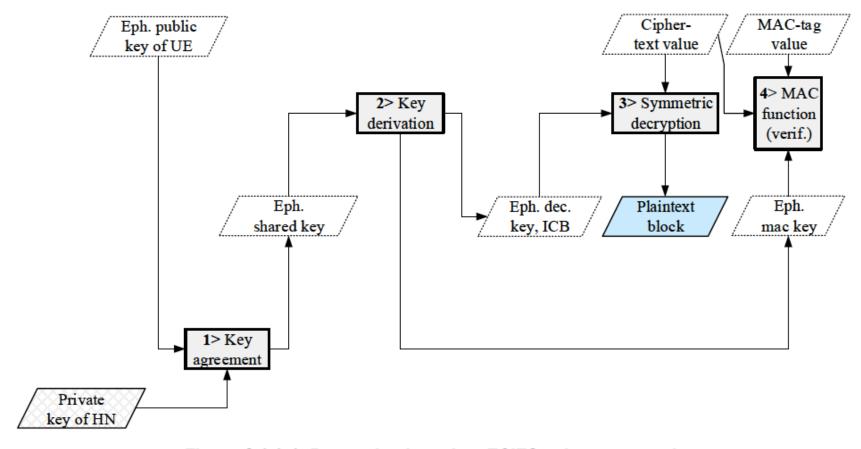


Figure C.3.3-1: Decryption based on ECIES at home network

ECIES: Elliptic Curve Integrated Encryption Scheme

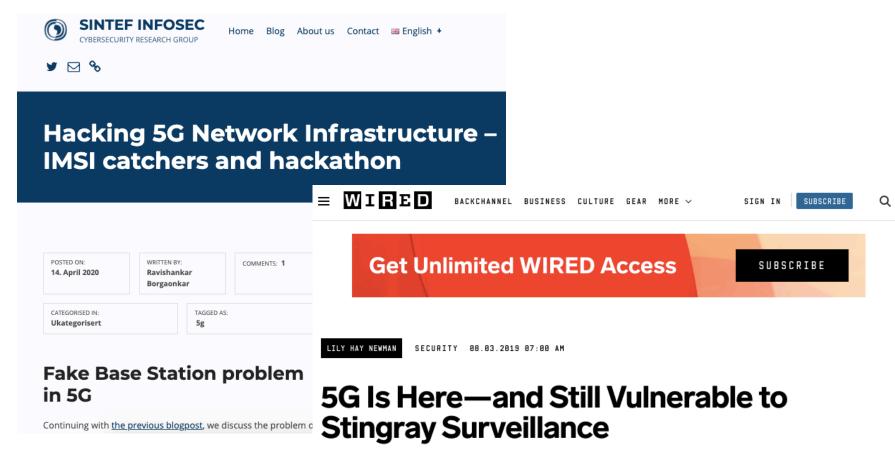
[3GPP TS 33.501 V16.4.0 (2020-09)]

Ruxandra F. Olimid

IMSI / SUPI Catching in 5G

- Downgrade to previous generations
- Null-scheme

"The UE shall generate a SUCI using "null-scheme" only in the following cases:


- if the UE is making an unauthenticated emergency session and it does not have a 5G-GUTI to the chosen PLMN, or
- if the home network has configured "null-scheme" to be used, or
- if the home network has not provisioned the public key needed to generate a SUCI."

[3GPP TS 33.501 V16.4.0 (2020-09)]

Computational costs and difficult management caused by public key cryptography

IMSI / SUPI Catching in 5G

[Source: https://infosec.sintef.no/en/informasjonssikkerhet/2020/04/hacking-5g-network-infrastructure-imsi-catchers-and-hackathon/]

5G was supposed to offer new protections against so-called stingray surveillance devices. New research shows it's anything but.

[Source: https://www.wired.com/story/5g-security-stingray-surveillance/]

IMSI / SUPI Catching in 5G

5GReasoner: A Property-Directed Security and Privacy Analysis Framework for 5G Cellular Network Protocol

Syed Rafiul Hussain Purdue University hussain1@purdue.edu

Mitziu Echeverria University of Iowa mitziu-echeverria@uiowa.edu Imtiaz Karim Purdue University karim7@purdue.edu

Omar Chowdhury University of Iowa omar-chowdhury@uiowa.edu

Elisa Bertino Purdue University bertino@purdue.edu

ABSTRACT

The paper proposes 5GReasoner, a framework for property-guided formal verification of control-plane protocols spanning across multiple layers of the 5G protocol stack. The underlying analysis carried out by 5GReasoner can be viewed as an instance of the model checking problem with respect to an adversarial environment. Due to an effective use of behavior-specific abstraction in our manually extracted 5G protocol, 5GReasoner's analysis generalizes prior analyses of cellular protocols by reasoning about properties not only regarding packet payload but also multi-layer protocol interactions. We instantiated 5GReasoner with two model checkers and a cryptographic protocol verifier, lazily combining them through the use of abstraction-refinement principle. Our analysis of the extracted 5G protocol model covering 6 key control-layer protocols spanning across two layers of the 5G protocol stack with 5GReasoner has identified 11 design weaknesses resulting in attacks having both security and privacy implications. Our analysis also discovered 5 previous design weaknesses that 5G inherits from 4G, and can be exploited to violate its security and privacy guarantees.

1 INTRODUCTION

The imminent deployment of the fifth generation (5G) cellular network has created a lot of enthusiasm in both industry and academia particularly due to its promise of enabling new applications such as smart vehicles and remote robotic surgery. 5G is not only envisioned as a replacement of home broadband Internet but also is expected to have impact in the military battlefield and emergency management by improving situational awareness. All these potential novel and critical applications of 5G can be attributed to its following enhancements over 4G LTE: (1) Improvements in the physical-layer technologies enabling the support of large numbers of devices with substantially improved bandwidth; (2) Robust security posture due to the introduction of security measures in the upper-layer of the 5G protocol stack. The 5G standard, however, has opened the door to a wide array of new security challenges stemming from: (i) New security policies that are not formally verified against adversarial assumptions; (ii) Retaining security mechanisms from 4G Long Term Evolution (LTE) and its predecessors. This paper thus aims to develop highly automated approaches enabling property-guided formal conflication of control plans mustocals of the EC protocal stack

Thank you!